VSCode Setup ==================================================== We recommend a docker environment based on the most recent pytorch e.g.: .. code-block:: bash FROM pytorch/pytorch:2.1.2-cuda12.1-cudnn8-devel RUN apt-get update && apt-get install -y wget openssh-client git-core bash-completion RUN wget -O /tmp/git-lfs.deb https://packagecloud.io/github/git-lfs/packages/ubuntu/focal/git-lfs_2.13.3_amd64.deb/download.deb && \ dpkg -i /tmp/git-lfs.deb && \ rm /tmp/git-lfs.deb RUN echo 'source /usr/share/bash-completion/completions/git' >> ~/.bashrc CMD ["/bin/bash"] This works seamlessly in combination with the VSCode DevContainer extention: .. code-block:: json { "name": "Dev Container", "dockerFile": "Dockerfile", "runArgs": [ "--network", "host", "--gpus", "all" ], "customizations": { "vscode": { "settings": { "terminal.integrated.shell.linux": "/bin/bash" }, "extensions": [ "ms-python.python" ] } } } In VSCode, add this to your :file:`launch.json`: .. code-block:: json { "name": "Torchrun Train and Eval", "type": "python", "request": "launch", "module": "torch.distributed.run", "env": { "CUDA_VISIBLE_DEVICES": "4,5" }, "args": [ "--nnodes", "1", "--nproc_per_node", "2", "--rdzv-endpoint=0.0.0.0:29503", "src/modalities/__main__.py", "run", "--config_file_path", "config_files/config_lorem_ipsum.yaml", ], "console": "integratedTerminal", "justMyCode": true, "envFile": "${workspaceFolder}/.env", "cwd": "${workspaceFolder}/modalities" }