modalities.config package
Submodules
modalities.config.component_factory module
- class modalities.config.component_factory.ComponentFactory(registry)[source]
Bases:
object
Factory class to build the components from a config dictionary.
Initializes the ComponentFactory with a registry.
- Args:
registry (Registry): Registry object to get the component and config classes.
- Parameters:
registry (Registry)
- build_components(config_dict, components_model_type)[source]
Builds the components from a config dictionary. All components specified in components_model_type are built from the config dictionary in a recursive manner.
- Return type:
TypeVar
(BaseModelChild
, bound=BaseModel
)- Parameters:
- Args:
config_dict (dict): Dictionary with the configuration of the components. components_model_type (Type[BaseModelChild]): Base model type defining the components to be build.
- Returns:
BaseModelChild: Instance of the components_model_type with the built components.
modalities.config.config module
- class modalities.config.config.ActivationCheckpointedModelConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
model (Annotated[FullyShardedDataParallel, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca72d0>])
-
model:
Annotated
[FullyShardedDataParallel
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.AdamOptimizerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.AdamWOptimizerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.BatchSamplerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.CLMCrossEntropyLossConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.CheckpointSavingConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
checkpoint_saving_strategy (Annotated[CheckpointSavingStrategyIF, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca70d0>])
checkpoint_saving_execution (Annotated[CheckpointSavingExecutionABC, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7150>])
-
checkpoint_saving_execution:
Annotated
[CheckpointSavingExecutionABC
]
-
checkpoint_saving_strategy:
Annotated
[CheckpointSavingStrategyIF
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.CombinedDatasetConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
datasets (list[Annotated[Dataset, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7550>]])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.CompiledModelConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.ConstantLRSchedulerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
optimizer (Annotated[Optimizer, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca79d0>])
factor (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0.0), Le(le=1.0)])])
total_iters (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])])
last_epoch (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=-1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.CosineAnnealingLRSchedulerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
optimizer (Annotated[Optimizer, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca79d0>])
t_max (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])])
eta_min (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0.0)])])
last_epoch (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=-1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.DCPAppStateConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.DCPCheckpointLoadingConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
global_rank (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.DCPCheckpointSavingConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.DistributedSamplerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
rank (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
num_replicas (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
shuffle (bool)
dataset (Annotated[Dataset, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7550>])
seed (int | None)
drop_last (Literal[True])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.DummyLRSchedulerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
optimizer (Annotated[Optimizer, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca79d0>])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.DummyProgressSubscriberConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.DummyResultSubscriberConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.FSDP1CheckpointLoadingConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
global_rank (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
mixed_precision_settings (MixedPrecisionSettings)
sharding_strategy (ShardingStrategy)
-
mixed_precision_settings:
MixedPrecisionSettings
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
sharding_strategy:
ShardingStrategy
- class modalities.config.config.FSDP1CheckpointSavingConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.FSDP1CheckpointedModelConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
checkpoint_loading (Annotated[FSDP1CheckpointLoadingIF, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca5890>])
checkpoint_path (Path)
model (Annotated[Module, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca71d0>])
-
checkpoint_loading:
Annotated
[FSDP1CheckpointLoadingIF
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.FSDP1CheckpointedOptimizerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
checkpoint_loading (Annotated[FSDP1CheckpointLoadingIF, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca5890>])
checkpoint_path (Path)
wrapped_model (Annotated[Module, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca71d0>])
optimizer (Annotated[Optimizer, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca79d0>])
-
checkpoint_loading:
Annotated
[FSDP1CheckpointLoadingIF
]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.FSDP2WrappedModelConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
model (Annotated[Module, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca71d0>])
mixed_precision_settings (FSDP2MixedPrecisionSettings)
reshard_after_forward (bool)
device_mesh (Annotated[DeviceMesh, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce8f90>])
-
device_mesh:
Annotated
[DeviceMesh
]
-
mixed_precision_settings:
FSDP2MixedPrecisionSettings
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.FSDPWrappedModelConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
model (Annotated[Module, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca71d0>])
sync_module_states (bool)
mixed_precision_settings (MixedPrecisionSettings)
sharding_strategy (ShardingStrategy)
-
mixed_precision_settings:
MixedPrecisionSettings
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
sharding_strategy:
ShardingStrategy
- class modalities.config.config.GPT2LLMCollateFnConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.GPT2MFUCalculatorConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
n_layer (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])])
sequence_length (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])])
n_embd (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])])
world_size (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])])
wrapped_model (Annotated[FullyShardedDataParallel, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca72d0>] | Annotated[FSDPModule, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca73d0>])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
wrapped_model:
Union
[Annotated
[FullyShardedDataParallel
],Annotated
[FSDPModule
]]
- class modalities.config.config.LLMDataLoaderConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
dataloader_tag (str)
dataset (Annotated[Dataset, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7550>])
batch_sampler (Annotated[Sampler, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7750>])
collate_fn (Annotated[CollateFnIF, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7850>] | None)
num_workers (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
pin_memory (bool)
-
collate_fn:
Optional
[Annotated
[CollateFnIF
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.LinearLRSchedulerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
optimizer (Annotated[Optimizer, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca79d0>])
start_factor (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0.0), Le(le=1.0)])])
end_factor (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0.0), Le(le=1.0)])])
total_iters (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])])
last_epoch (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=-1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.MemMapDatasetConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
raw_data_path (Annotated[Path, PathType(path_type=file)])
index_path (Annotated[Path, PathType(path_type=file)] | None)
tokenizer (Annotated[TokenizerWrapper, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7490>])
jq_pattern (str)
sample_key (str)
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
tokenizer:
Annotated
[TokenizerWrapper
]
- class modalities.config.config.OneCycleLRSchedulerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
optimizer (Annotated[Optimizer, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca79d0>])
max_lr (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0.0)])] | list[Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0.0)])]])
total_steps (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])] | None)
epochs (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])] | None)
steps_per_epoch (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])] | None)
pct_start (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0.0), Le(le=1.0)])])
anneal_strategy (str)
cycle_momentum (bool)
base_momentum (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])] | list[Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0.0)])]])
max_momentum (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0.0)])] | list[Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0.0)])]])
div_factor (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0.0)])])
final_div_factor (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0.0)])])
three_phase (bool)
last_epoch (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=-1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.PackedMemMapDatasetContinuousConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.PackedMemMapDatasetMegatronConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.PassType(value)[source]
Bases:
LookupEnum
- BY_REFERENCE = 'by_reference'
- BY_VALUE = 'by_value'
- class modalities.config.config.PreTrainedHFTokenizerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.PreTrainedSPTokenizerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
tokenizer_model_file (str)
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.PrecisionEnum(value)[source]
Bases:
LookupEnum
- BF16 = torch.bfloat16
- FP16 = torch.float16
- FP32 = torch.float32
- class modalities.config.config.ProcessGroupBackendType(value)[source]
Bases:
LookupEnum
- nccl = 'nccl'
- class modalities.config.config.RawAppStateConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
model (Annotated[Module, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca71d0>])
optimizer (Annotated[Optimizer, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca79d0>])
lr_scheduler (Annotated[LRScheduler, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7c90>] | None)
-
lr_scheduler:
Optional
[Annotated
[LRScheduler
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.ReferenceConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.ResumableDistributedSamplerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
dataset (Annotated[Dataset, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7550>])
rank (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
num_replicas (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
epoch (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
shuffle (bool | None)
seed (int | None)
drop_last (Literal[True])
skip_num_global_samples (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.RichProgressSubscriberConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
eval_dataloaders (list[Annotated[LLMDataLoader, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7910>]] | None)
train_dataloader_tag (str)
num_seen_steps (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
num_target_steps (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])])
global_rank (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
-
eval_dataloaders:
Optional
[list
[Annotated
[LLMDataLoader
]]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.RichResultSubscriberConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.SaveEveryKStepsCheckpointingStrategyConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.SaveKMostRecentCheckpointsStrategyConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
k (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=-1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.SequentialSamplerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data_source (Annotated[Dataset, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7550>])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.StepLRSchedulerConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
optimizer (Annotated[Optimizer, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca79d0>])
step_size (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Gt(gt=0)])])
gamma (Annotated[float, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0.0)])])
last_epoch (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=-1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.TokenizerTypes(value)[source]
Bases:
LookupEnum
- GPT2TokenizerFast = <class 'transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast'>
- LlamaTokenizerFast = <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>
- class modalities.config.config.TorchCheckpointLoadingConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
device (Annotated[device, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce8250>])
precision (PrecisionEnum | None)
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
precision:
Optional
[PrecisionEnum
]
- class modalities.config.config.WandBEvaluationResultSubscriberConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.config.WandbMode(value)[source]
Bases:
LookupEnum
- DISABLED = 'DISABLED'
- OFFLINE = 'OFFLINE'
- ONLINE = 'ONLINE'
- class modalities.config.config.WeightInitializedModelConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
model (Annotated[Module, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca71d0>])
model_initializer (Annotated[ModelInitializationIF, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce8ed0>])
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
model_initializer:
Annotated
[ModelInitializationIF
]
- modalities.config.config.load_app_config_dict(config_file_path, experiment_id=None, additional_resolver_funs=None)[source]
Load the application configuration from the given YAML file. The function defines custom resolvers for the OmegaConf library to resolve environment variables and Modalities-specific variables.
- Return type:
- Parameters:
- Args:
config_file_path (Path): YAML config file. experiment_id (str, optional): The experiment_id of the current run. Defaults to None. additional_resolver_funs (dict[str, Callable], optional): Additional resolver functions. Defaults to None.
- Returns:
dict: Dictionary representation of the config file.
modalities.config.instantiation_models module
- class modalities.config.instantiation_models.ConsistencyEnforcement(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.instantiation_models.CudaEnvSettings(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
local_rank (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
world_size (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
global_rank (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.instantiation_models.Intervals(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
training_log_interval_in_steps (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
checkpointing_interval_in_steps (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
evaluation_interval_in_steps (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.instantiation_models.PackedDatasetComponentsInstantiationModel(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
tokenizer (Annotated[TokenizerWrapper, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7490>])
settings (PackedDatasetSettings)
- class PackedDatasetSettings(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
src_path (Annotated[Path, PathType(path_type=file)])
dst_path (Path | None)
index_path (Annotated[Path, PathType(path_type=file)] | None)
jq_pattern (str)
num_cpus (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
eod_token (str)
processing_batch_size (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
raw_samples_queue_size (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
processed_samples_queue_size (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
settings:
PackedDatasetSettings
-
tokenizer:
Annotated
[TokenizerWrapper
]
- class modalities.config.instantiation_models.StepProfile(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
gradient_accumulation_steps (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
local_train_micro_batch_size (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
sequence_length (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.instantiation_models.TextGenerationInstantiationModel(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
text_inference_component (Annotated[TextInferenceComponent, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce88d0>])
settings (TextGenerationSettings)
- class TextGenerationSettings(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {'protected_namespaces': ()}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
settings:
TextGenerationSettings
-
text_inference_component:
Annotated
[TextInferenceComponent
]
- class modalities.config.instantiation_models.TrainingComponentsInstantiationModel(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
settings (Settings)
app_state (Annotated[AppState, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce9050>])
loss_fn (Annotated[Loss, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce8850>])
train_dataset (Annotated[Dataset, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7550>])
train_dataloader (Annotated[LLMDataLoader, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7910>])
eval_dataloaders (list[Annotated[LLMDataLoader, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca7910>]])
progress_subscriber (Annotated[MessageSubscriberIF, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce8b90>])
evaluation_subscriber (Annotated[MessageSubscriberIF, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce8b90>])
checkpoint_saving (Annotated[CheckpointSaving, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca5650>])
gradient_clipper (Annotated[GradientClipperIF, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce8e10>])
mfu_calculator (Annotated[MFUCalculatorABC, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efce9190>] | None)
model_raw (Annotated[Module, <modalities.config.pydantic_if_types.PydanticThirdPartyTypeIF object at 0x7f67efca71d0>])
- class Settings(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
experiment_id (str)
config_file_path (Annotated[Path, PathType(path_type=file)])
cuda_env (CudaEnvSettings)
paths (Paths)
intervals (Intervals)
consistency_enforcement (ConsistencyEnforcement)
step_profile (StepProfile)
training_target (TrainingTarget)
training_progress (TrainingProgress)
warmstart_checkpoint_paths (WarmstartCheckpointPaths | DCPWarmstartCheckpointPaths | None)
- class DCPWarmstartCheckpointPaths(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
checkpoint_folder_path (Path)
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class Paths(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {'extra': 'allow'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class WarmstartCheckpointPaths(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
consistency_enforcement:
ConsistencyEnforcement
-
cuda_env:
CudaEnvSettings
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
step_profile:
StepProfile
-
training_progress:
TrainingProgress
-
training_target:
TrainingTarget
-
warmstart_checkpoint_paths:
Union
[WarmstartCheckpointPaths
,DCPWarmstartCheckpointPaths
,None
]
-
checkpoint_saving:
Annotated
[CheckpointSaving
]
-
eval_dataloaders:
list
[Annotated
[LLMDataLoader
]]
-
evaluation_subscriber:
Annotated
[MessageSubscriberIF
]
-
gradient_clipper:
Annotated
[GradientClipperIF
]
-
mfu_calculator:
Optional
[Annotated
[MFUCalculatorABC
]]
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
-
progress_subscriber:
Annotated
[MessageSubscriberIF
]
-
train_dataloader:
Annotated
[LLMDataLoader
]
- class modalities.config.instantiation_models.TrainingProgress(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
global_num_seen_tokens (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
num_seen_steps (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
num_seen_samples (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=0)])])
last_step (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=-1)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.config.instantiation_models.TrainingReportGenerator(training_target, intervals, step_profile, cuda_env, consistency_enforcement, train_dataset, training_progress)[source]
Bases:
object
- Parameters:
training_target (TrainingTarget)
intervals (Intervals)
step_profile (StepProfile)
cuda_env (CudaEnvSettings)
consistency_enforcement (ConsistencyEnforcement)
train_dataset (Dataset)
training_progress (TrainingProgress)
- class modalities.config.instantiation_models.TrainingTarget(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].