modalities.nn package
Subpackages
- modalities.nn.model_initialization package
- Submodules
- modalities.nn.model_initialization.composed_initialization module
ComposedInitializationRoutinesComposedModelInitializationConfigComposedModelInitializationConfig.hidden_dimComposedModelInitializationConfig.meanComposedModelInitializationConfig.model_configComposedModelInitializationConfig.model_typeComposedModelInitializationConfig.num_layersComposedModelInitializationConfig.stdComposedModelInitializationConfig.weight_init_type
ModelInitializerWrapperModelInitializerWrapperConfig
- modalities.nn.model_initialization.initialization_if module
- modalities.nn.model_initialization.initialization_routines module
- modalities.nn.model_initialization.parameter_name_filters module
- Module contents
Submodules
modalities.nn.attention module
- class modalities.nn.attention.AttentionConfig(**data)[source]
Bases:
BaseModelCreate a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
attention_engine_type (AttentionEngineType)
-
attention_engine_type:
AttentionEngineType
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.nn.attention.AttentionEngineType(value)[source]
-
- DEFAULT_ATTENTION = 'default_attention'
- PYTORCH_FLASH_ATTENTION = 'pytorch_flash_attention'
- class modalities.nn.attention.AttentionType(value)[source]
-
- CAUSAL_SELF_ATTENTION = 'causal_self_attention'
- CROSS_ATTENTION = 'cross_attention'
- NON_CAUSAL_SELF_ATTENTION = 'non_causal_self_attention'
- class modalities.nn.attention.MultiHeadAttention(attention_config=None, attention_type=AttentionType.CAUSAL_SELF_ATTENTION, n_embd=768, n_head=8, bias=True, dropout=0.0, block_size=1024)[source]
Bases:
ModuleInitialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
attention_config (AttentionConfig)
attention_type (AttentionType)
n_embd (int)
n_head (int)
bias (bool)
dropout (float)
block_size (int)
- forward(x, context=None)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
modalities.nn.mlp module
- class modalities.nn.mlp.MLP(in_features, hidden_features=None, out_features=None, bias=True, dropout=0.0, act_fn=<class 'torch.nn.modules.activation.GELU'>)[source]
Bases:
ModuleInitialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
- forward(x)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.