modalities.nn package
Subpackages
- modalities.nn.model_initialization package
- Submodules
- modalities.nn.model_initialization.composed_initialization module
ComposedInitializationRoutines
ComposedModelInitializationConfig
ComposedModelInitializationConfig.hidden_dim
ComposedModelInitializationConfig.mean
ComposedModelInitializationConfig.model_config
ComposedModelInitializationConfig.model_type
ComposedModelInitializationConfig.num_layers
ComposedModelInitializationConfig.std
ComposedModelInitializationConfig.weight_init_type
ModelInitializerWrapper
ModelInitializerWrapperConfig
- modalities.nn.model_initialization.initialization_if module
- modalities.nn.model_initialization.initialization_routines module
- modalities.nn.model_initialization.parameter_name_filters module
- Module contents
Submodules
modalities.nn.attention module
- class modalities.nn.attention.AttentionConfig(**data)[source]
Bases:
BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
attention_engine_type (AttentionEngineType)
-
attention_engine_type:
AttentionEngineType
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.nn.attention.AttentionEngineType(value)[source]
-
- DEFAULT_ATTENTION = 'default_attention'
- PYTORCH_FLASH_ATTENTION = 'pytorch_flash_attention'
- class modalities.nn.attention.AttentionType(value)[source]
-
- CAUSAL_SELF_ATTENTION = 'causal_self_attention'
- CROSS_ATTENTION = 'cross_attention'
- NON_CAUSAL_SELF_ATTENTION = 'non_causal_self_attention'
- class modalities.nn.attention.MultiHeadAttention(attention_config=None, attention_type=AttentionType.CAUSAL_SELF_ATTENTION, n_embd=768, n_head=8, bias=True, dropout=0.0, block_size=1024)[source]
Bases:
Module
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
attention_config (AttentionConfig)
attention_type (AttentionType)
n_embd (int)
n_head (int)
bias (bool)
dropout (float)
block_size (int)
- forward(x, context=None)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
modalities.nn.mlp module
- class modalities.nn.mlp.MLP(in_features, hidden_features=None, out_features=None, bias=True, dropout=0.0, act_fn=<class 'torch.nn.modules.activation.GELU'>)[source]
Bases:
Module
Initialize internal Module state, shared by both nn.Module and ScriptModule.
- Parameters:
- forward(x)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.