modalities.nn package
Subpackages
- modalities.nn.model_initialization package- Submodules
- modalities.nn.model_initialization.composed_initialization module- ComposedInitializationRoutines
- ComposedModelInitializationConfig- ComposedModelInitializationConfig.hidden_dim
- ComposedModelInitializationConfig.mean
- ComposedModelInitializationConfig.model_config
- ComposedModelInitializationConfig.model_type
- ComposedModelInitializationConfig.num_layers
- ComposedModelInitializationConfig.std
- ComposedModelInitializationConfig.weight_init_type
 
- ModelInitializerWrapper
- ModelInitializerWrapperConfig
 
- modalities.nn.model_initialization.initialization_if module
- modalities.nn.model_initialization.initialization_routines module
- modalities.nn.model_initialization.parameter_name_filters module
- Module contents
 
Submodules
modalities.nn.attention module
- class modalities.nn.attention.AttentionConfig(**data)[source]
- Bases: - BaseModel- Create a new model by parsing and validating input data from keyword arguments. - Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model. - self is explicitly positional-only to allow self as a field name. - Parameters:
- attention_engine_type (AttentionEngineType) 
 - 
attention_engine_type: AttentionEngineType
 - model_config: ClassVar[ConfigDict] = {}
- Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict]. 
 
- class modalities.nn.attention.AttentionEngineType(value)[source]
- 
- DEFAULT_ATTENTION = 'default_attention'
 - PYTORCH_FLASH_ATTENTION = 'pytorch_flash_attention'
 
- class modalities.nn.attention.AttentionType(value)[source]
- 
- CAUSAL_SELF_ATTENTION = 'causal_self_attention'
 - CROSS_ATTENTION = 'cross_attention'
 - NON_CAUSAL_SELF_ATTENTION = 'non_causal_self_attention'
 
- class modalities.nn.attention.MultiHeadAttention(attention_config=None, attention_type=AttentionType.CAUSAL_SELF_ATTENTION, n_embd=768, n_head=8, bias=True, dropout=0.0, block_size=1024)[source]
- Bases: - Module- Initialize internal Module state, shared by both nn.Module and ScriptModule. - Parameters:
- attention_config (AttentionConfig) 
- attention_type (AttentionType) 
- n_embd (int) 
- n_head (int) 
- bias (bool) 
- dropout (float) 
- block_size (int) 
 
 - forward(x, context=None)[source]
- Define the computation performed at every call. - Should be overridden by all subclasses. - Note - Although the recipe for forward pass needs to be defined within this function, one should call the - Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
 
modalities.nn.mlp module
- class modalities.nn.mlp.MLP(in_features, hidden_features=None, out_features=None, bias=True, dropout=0.0, act_fn=<class 'torch.nn.modules.activation.GELU'>)[source]
- Bases: - Module- Initialize internal Module state, shared by both nn.Module and ScriptModule. - Parameters:
 - forward(x)[source]
- Define the computation performed at every call. - Should be overridden by all subclasses. - Note - Although the recipe for forward pass needs to be defined within this function, one should call the - Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.