modalities.models.components package
Submodules
modalities.models.components.layer_norms module
- class modalities.models.components.layer_norms.LayerNormConfig(**data)[source]
Bases:
BaseModel
Configuration class for Layer Normalization.
- Args:
normalized_shape (int): The expected size of the input shape. eps (float, optional): A value added to the denominator for numerical stability. Defaults to 1e-6. elementwise_affine (bool, optional): Whether to include learnable affine parameters. Defaults to True. bias (bool, optional): Whether to include a bias term. Defaults to True.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
normalized_shape (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
eps (Annotated[float, FieldInfo(annotation=NoneType, required=False, default=1e-06, metadata=[Strict(strict=True), Gt(gt=0)])])
elementwise_affine (Annotated[bool, FieldInfo(annotation=NoneType, required=False, default=True, metadata=[Strict(strict=True)])])
bias (Annotated[bool, FieldInfo(annotation=NoneType, required=False, default=True, metadata=[Strict(strict=True)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class modalities.models.components.layer_norms.RMSLayerNorm(ndim, bias=True, epsilon=1e-05)[source]
Bases:
Module
RMS normalization class.
Initializes a LayerNorm module.
- Args:
ndim (int): The number of dimensions of the input tensor. bias (bool, optional): If True, adds a learnable bias to the normalized tensor. Defaults to True. epsilon (float, optional): A small value added to the denominator for numerical stability. Defaults to 1e-5.
- Note:
Original paper: https://arxiv.org/pdf/1910.07467.pdf Source code adopted from https://github.com/facebookresearch/llama/blob/a0a4da8b497c566403941ceec47c2512ecf9dd20/llama/model.py#L34C1-L77C36
- Returns:
None
- class modalities.models.components.layer_norms.RMSLayerNormConfig(**data)[source]
Bases:
BaseModel
Configuration class for RMSLayerNorm.
- Args:
ndim (int): Number of dimensions for the input tensor. Must be greater than or equal to 1. epsilon (float, optional): Small value added to the input to avoid division by zero. Defaults to 1e-6. bias (bool, optional): Whether to include a bias term. Defaults to True.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
ndim (Annotated[int, FieldInfo(annotation=NoneType, required=True, metadata=[Strict(strict=True), Ge(ge=1)])])
epsilon (Annotated[float, FieldInfo(annotation=NoneType, required=False, default=1e-06, metadata=[Gt(gt=0)])])
bias (Annotated[bool, FieldInfo(annotation=NoneType, required=False, default=True, metadata=[Strict(strict=True)])])
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].